
34 December 2003 Linux Magazine www.linuxmagazine.com

Management with Condor, Part 3
By Forrest Hoffman

EXTREME LINUX

T he last two Extreme Linux columns provided an introduc-
tion to the Condor workload management system, gave

detailed installation and configuration instructions for Beowulf
clusters, and showed the details of managing and running
MPI jobs (parallel programs that use the Message Passing
Interface) with Condor. This month, let’s continue looking
at Condor, explore some of its advanced features, and check
out its powerful queuing capabilities for lots of serial tasks.

First, let’s quickly review Condor’s basic characteristics.
Condor was designed to make effective use of a pool of com-
puting resources, whether they’re dedicated nodes in a clus-
ter or disparate workstations distributed across a network. A
Condor pool consists of a central manager and a number of
other machines that join the pool as participating resources.
Condor provides a job queuing mechanism, scheduling pol-
icy, job and user priority schemes, and resource classification
mechanisms. It matches job requirements (job ClassAds)
with advertised resource attributes (machine ClassAds) to
decide where and how jobs should be executed.

Condor jobs run in one of a number of universes, where
each universe has different characteristics. The vanilla
universe may be used to run any serial task. The standard
universe supports serial tasks, but provides automatic process
migration among nodes and remote system calls (back) to
the originating host. However, programs run in the stan-
dard universe must be linked with Condor’s own libraries,
and may not perform some kinds of operations.

The PVM and MPI universes provide support for parallel
programs, while the globus universe allows users to submit
Globus (grid computing) jobs. Details on configuring and
using the MPI universe were presented in last month’s col-
umn (available online at http://www.linuxmagazine.com/
2003-11/extreme_01.html).

The java universe runs programs written for the Java
Virtual Machine (JVM), and the scheduler universe is
used internally for immediate job execution.

Specific instructions for installing Condor on a typical Beo-
wulf cluster were provided in the October column (available
online at http://www.linuxmagazine.com/2003-10/extreme_
01.html). The rules under which jobs may be run on these
different resources can be configured for each machine.

For instance, a researcher may be glad to have jobs run on
her workstation between the hours of 5:00 p.m. and 8:00
a.m. as long as no keyboard activity is present. As a result,
Condor can effectively harvest cycles from computers that
are not actively running other tasks.

Condor provides mechanisms for both job and user prior-

ities. Job priorities allow the user to control the order of exe-
cution of submitted jobs. User priorities, established by the
system administrator, control the distribution of compute
cycles among jobs owned by various users. Condor adjusts
each user’s effective (run-time) priority to ensure that every-
one gets his fair share allocation of cycles. Jobs run in the
standard universe may even be preempted (checkpointed
and halted), thereby freeing up machines for a higher prior-
ity user’s jobs.

Jobs are submitted to Condor using condor_submit and a
submit description file. This file contains all the information
Condor needs to run the job, including the name of the exe-
cutable to run, command-line arguments to the program,
run-time directories, input and output files, and job-related
requirements used in creating the job ClassAd.

Basic submit description files were discussed in previous
columns. Here, let’s see how to use some more advanced
options.

Running Lots of Jobs in the vanilla Universe

In addition to running parallel programs, Beowulf clusters
are often called upon to run “distributed” jobs or lots of seri-

FIGURE ONE: A Condor submit description file for
running the same program in multiple directories

#####################################

Analyze lots of input.dat files in

different directories

#####################################

Executable = analyze

Universe = vanilla

input = input.dat

output = output.dat

error = error.dat

log = analyze.log

Initialdir = run0

Queue

Initialdir = run1

Queue

Initialdir = run2

Queue

Initialdir = run3

Queue

1203 Extreme 10/22/03 2:10 AM Page 34

al tasks simultaneously. Such jobs may involve independent
analyses of separate images, rendering of individual movie
frames, many gene sequence comparisons, and Monte Carlo
techniques, among others. These are all tasks that either work
independently on a single data set or perform the same oper-
ations or independent analyses on separate data sets. Condor
was designed to make this sort of distributed or “massively
serial” computing easy.

For example, if a single program needs to be run against a
number of different datasets and that program creates or uses
files with fixed file names, it may be desirable to perform
these runs in separate directories to avoid conflicts if the jobs
all run simultaneously.

Figure One contains a submit description file that demon-
strates this capability. The same executable program (analyze)
runs four times, once in each directory, run1, run2, run3, and
run4. The user initially creates the input.dat file in each direc-
tory before submitting the description file to Condor. After
the file is submitted using condor_submit, all four jobs are
queued and run simultaneously if adequate resources are av-
ailable in the pool. An output.dat, error.dat, and analyze.log
file is created in each directory, along with any other files
that the analyze program may create.

Alternatively, using pre-defined macros can make the sub-
mit description file even shorter. The file shown in Figure
Two does the same thing as the one shown in Figure One: it
starts four jobs, one in each run directory. The $(Process)
macro expands to be the process number (beginning at zero)
for each task. The Queue 4 line creates four jobs or tasks that
can run simultaneously.

Similarly, if a couple hundred images need to be processed,
the jobs can all be submitted using a single submit descrip-
tion file like that shown in Figure Three. This file creates two
hundred jobs that run image_proc with slightly different

command line arguments. For this example, the imageN.png
files are inputs (where N goes from 0 to 199), and the results
are output to resultsN. Separate output (stdout), error (stderr),
and log files are generated for each process.

Of course, running two hundred jobs means that you’ll
receive two hundred email messages notifying you of each
job completion. To disable email notifications, add the line
notification = never to the submit description file.

Compiling Codes for the Standard Universe

In the standard universe, Condor provides checkpointing
(generation of a file containing a snapshot image of the cur-
rent state of the job) and remote system calls. If a job must
be stopped or if the machine on which it was running crash-
es, Condor uses the last checkpoint image to restart the job
(from where it left off) on another machine.

Remote system calls make a job appear to execute on its
home machine. A process called condor_shadow runs on the
machine where the job was submitted, and performs the need-
ed system calls and I/O operations even though the job may
actually be running on a different machine. The relevant data
are then forwarded to the job process wherever it is running.

To take advantage of these features and run in the stan-
dard universe, programs must be relinked with the Condor
libraries using condor_compile. This is usually accomplished
by putting condor_compile in front of your usual link or build
command. For example, to build a new binary from an exist-
ing object file, the syntax looks like:

% condor_compile gcc –o analyze analyze.o

functions.o util.o

Since you need the unlinked object files, it may not be
possible to relink commercial software or programs for which

EXTREME LINUX

www.linuxmagazine.com Linux Magazine December 2003 35

FIGURE TWO: A Condor submit description file for
running the same program in multiple directories using
the $(Process) macro

#####################################

Analyze lots of input.dat files in

different directories using macros

#####################################

Executable = analyze

Universe = vanilla

input = input.dat

output = output.dat

error = error.dat

log = analyze.log

Initialdir = run$(Process)

Queue 4

FIGURE THREE: A Condor submit description file for
running the same program with different command
line arguments

#####################################

Process 200 images and save the

results in separate files

#####################################

Executable = image_proc

Universe = vanilla

output = image_proc.out.$(Process)

error = image_proc.err.$(Process)

log = image_proc.log.$(Process)

Arguments = –w 640 –h 480 –i

image$(Process).png –o result$(Process)

Queue 200

1203 Extreme 10/22/03 2:11 AM Page 35

you have only the executable file. The condor_compile script
can also be used in compile and link commands…

% condor_compile gcc –O –o time_waster

time_waster.c –lm

… or even in front of make or a build script:

% condor_compile make

% condor_compile build

Once a program is linked in this fashion, it can be used as an
executable in a submit description file to be run in the stan-
dard universe. In addition, it can be run interactively for
standalone checkpointing. With standalone checkpointing,
a code can run and then be forced to write a checkpoint image
and stop. The job can then be restarted manually later using
the checkpoint image and will continue where it left off.

For example, in Figure Four, a program called time_waster
is compiled using condor_compile then executed from the

command line. The Condor libraries notify the user that the
code will checkpoint to a file called time_waster.ckpt, and
that remote system calls are disabled. After pass nine, say,
the user sends the process a SIGTSTP signal by pressing
CONTROL-Z, after which the program writes a checkpoint
image to time_waster.ckpt and exits. The user then restarts
the program manually on a different machine (pointing the
code to the correct checkpoint image file), and it continues
right where it left off in pass 10. Sending a SIGUSR2 signal
to the process causes it to checkpoint and continue running.

Checkpointing and restarting (along with remote system
calls) allows the Condor system to preempt jobs and later
migrate them to other machines (of the same architecture)
where they continue where they left off.

This program can be scheduled to run under the Condor
system by creating an appropriate submit description file —
like that shown in Figure Five — which references the
standard universe. This file queues up eight identical
time_waster jobs.

Once submitted using condor_submit, as shown in Figure
Six, condor_q shows that all eight jobs are running. Using the
condor_vacate command, you can force the jobs running on
some machines, node002 and node003 in this example, to be
stopped and removed from those machines. (It’s not normal-
ly necessary to ever use the condor_vacate command explic-
itly since Condor normally handles these details when nec-
essary. It’s used here merely to demonstrate the capability.)
standard universe jobs that are preempted in this fash-

ion checkpoint and exit so they can be restarted automati-
cally at a later time. Jobs running in the vanilla universe
that are preempted are killed and are restarted from the
beginning by Condor at a later time.

In Figure Six we see from the condor_status listing that jobs
are being preempted on the affected hosts (where State is
Preempting and Activity is Vacating). A check of the

EXTREME LINUX

36 December 2003 Linux Magazine www.linuxmagazine.com

FIGURE FOUR: Standalone checkpointing and restarting

[forrest@node001 zim]$ ccoonnddoorr__ccoommppiillee ggcccc ––OO

––oo ttiimmee__wwaasstteerr ttiimmee__wwaasstteerr..cc ––llmm

[forrest@node001 zim]$..//ttiimmee__wwaasstteerr

Condor: Notice: Will checkpoint to

./time_waster.ckpt

Condor: Notice: Remote system calls disabled.

After pass 0, y = 3.09806

After pass 1, y = 6

After pass 2, y = 8.79703

After pass 3, y = 11.5229

After pass 4, y = 14.195

After pass 5, y = 16.8239

After pass 6, y = 19.4168

After pass 7, y = 21.9788

After pass 8, y = 24.5137

After pass 9, y = 27.0246

User defined signal 2

[forrest@node001 zim]$ ssllooggiinn nnooddee000022

[forrest@node002 forrest]$ ccdd zziimm

[forrest@node002 zim]$..//ttiimmee__wwaasstteerr

––__ccoonnddoorr__rreessttaarrtt ttiimmee__wwaasstteerr..cckkpptt

Condor: Notice: Will restart from

time_waster.ckpt

After pass 10, y = 29.5137

After pass 11, y = 31.9832

After pass 12, y = 34.4346

After pass 13, y = 36.8693

After pass 14, y = 39.2884

.

.

.

FIGURE FIVE: A submit description file for time_waster
to run eight times in the standard universe

#####################################

Waste lots of time

#####################################

Executable = time_waster

Universe = standard

output = time_waster.out.$(Process)

error = time_waster.err.$(Process)

log = time_waster.log.$(Process)

notification = never

Arguments = –p 10

Queue 8

See Extreme, pg. 59

1203 Extreme 10/22/03 2:12 AM Page 36

EXTREME LINUX

www.linuxmagazine.com Linux Magazine December 2003 37

FIGURE SIX

[forrest@node001 zim]$ ccoonnddoorr__ssuubbmmiitt ttiimmee__wwaasstteerr..ccoonnddoorr

Submitting job(s)........

Logging submit event(s)........

8 job(s) submitted to cluster 56.

[forrest@node001 zim]$ ccoonnddoorr__qq

— Submitter: node001.cluster.ornl.gov : <192.168.54.1:54461> :

node001.cluster.ornl.gov

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

56.0 forrest 10/11 01:00 0+00:02:52 R 0 3.4 time_waster -p 10

56.1 forrest 10/11 01:00 0+00:02:49 R 0 3.4 time_waster -p 10

56.2 forrest 10/11 01:00 0+00:02:45 R 0 3.4 time_waster -p 10

56.3 forrest 10/11 01:00 0+00:02:43 R 0 3.4 time_waster -p 10

56.4 forrest 10/11 01:00 0+00:02:41 R 0 3.4 time_waster -p 10

56.5 forrest 10/11 01:00 0+00:02:39 R 0 3.4 time_waster -p 10

56.6 forrest 10/11 01:00 0+00:02:47 R 0 3.4 time_waster -p 10

56.7 forrest 10/11 01:00 0+00:02:37 R 0 3.4 time_waster -p 10

8 jobs; 0 idle, 8 running, 0 held

[forrest@node001 zim]$ ccoonnddoorr__vvaaccaattee nnooddee000022 nnooddee000033

[forrest@node001 zim]$ ccoonnddoorr__ssttaattuuss

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

vm1@node001.c LINUX INTEL Owner Idle 1.000 1008 25+01:51:51

vm2@node001.c LINUX INTEL Unclaimed Idle 0.010 1008 0+00:10:05

vm1@node002 LINUX INTEL Preempting Vacating 1.980 503 0+00:00:04

vm2@node002 LINUX INTEL Preempting Vacating 2.090 503 0+00:00:05

vm1@node003 LINUX INTEL Preempting Vacating 1.940 503 0+00:00:04

vm2@node003 LINUX INTEL Preempting Vacating 2.050 503 0+00:00:05

vm1@node004 LINUX INTEL Claimed Busy 1.990 503 0+00:07:30

vm2@node004 LINUX INTEL Unclaimed Idle 1.000 503 0+00:41:47

vm1@node005 LINUX INTEL Unclaimed Idle 1.000 503 0+00:12:59

vm2@node005 LINUX INTEL Unclaimed Idle 1.000 503 0+00:13:11

vm1@node006 LINUX INTEL Claimed Busy 1.240 503 0+00:07:35

vm2@node006 LINUX INTEL Claimed Busy 1.750 503 0+00:07:33

vm1@node007 LINUX INTEL Unclaimed Idle 1.000 503 0+00:40:19

vm2@node007 LINUX INTEL Unclaimed Idle 0.990 503 0+00:40:05

vm1@node008 LINUX INTEL Claimed Busy 1.990 503 0+00:07:41

vm2@node008 LINUX INTEL Unclaimed Idle 1.000 503 0+01:00:08

.

.

.

Machines Owner Claimed Unclaimed Matched Preempting

INTEL/LINUX 128 1 4 119 0 4

Total 128 1 4 119 0 4

[forrest@node001 zim]$ ccoonnddoorr__qq

— Submitter: node001.cluster.ornl.gov : <192.168.54.1:54461> :

node001.cluster.ornl.gov

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

56.0 forrest 10/11 01:00 0+00:07:55 I 0 4.1 time_waster -p 10

56.1 forrest 10/11 01:00 0+00:07:51 I 0 4.1 time_waster -p 10

56.2 forrest 10/11 01:00 0+00:07:45 I 0 4.1 time_waster -p 10

56.3 forrest 10/11 01:00 0+00:07:43 I 0 4.1 time_waster -p 10

56.4 forrest 10/11 01:00 0+00:09:26 R 0 3.4 time_waster -p 10

56.5 forrest 10/11 01:00 0+00:09:24 R 0 3.4 time_waster -p 10

56.6 forrest 10/11 01:00 0+00:09:32 R 0 3.4 time_waster -p 10

56.7 forrest 10/11 01:00 0+00:09:22 R 0 3.4 time_waster -p 10

8 jobs; 4 idle, 4 running, 0 held

1203 Extreme 10/22/03 2:12 AM Page 37

job queue using condor_q shows that four jobs that were pre-
empted are idle and the remaining four are running. Some
time later, Condor restarted the four preempted jobs, and
they continued from where they left off.

Requirements and Rank Expressions

Two additional keywords are frequently used in submit
description files: requirements and rank. These powerful
commands allow you to specify exact ClassAd expressions
for submitted jobs that would otherwise be set to default val-
ues by condor_submit. ClassAd attributes are case sensitive,
so great care must be taken when specifying requirements
and rank values.

Valid ClassAd attributes are those that appear in a
machine or a job ClassAd. To see all the machine ClassAd
attributes, run condor_status –l for all machines in a
pool, or condor_status –l hostname for a specific host-
name. The Condor documentation lists all the valid attrib-
utes that may be specified. The most commonly used job
ClassAd attributes are those that refer to memory require-
ments, floating point performance, computer architecture,
and operating systems.

For example, in a heterogeneous pool of machines, a job
can be ensured to run only on Intel boxes running Linux if
the following line is added to the submit description file:

Requirements = (Arch == “INTEL” &&

OpSys == “LINUX”)

Since these attributes can be used as macros, it’s fairly easy
to write a submit description file that starts the correct exe-
cutable on the correct architecture and operating system.
For example:

Requirements = ((Arch == “INTEL” && OpSys

== “LINUX”) ||

(Arch == “SGI” && OpSys == “IRIX65”))

Executable = analyze.$$(OpSys).$$(Arch)

The rank expression affects the numerical preference
value for machines during match making. For a job that
needs to run on the machine with the most memory, you
might use:

Rank = memory

To be more explicit, you might want your job to require at
least 32 MB of memory, but prefer to run on machines with
64 MB or larger. You can express that with:

Requirements = Memory >= 32

Rank = Memory >= 64

For a job that needs the best floating point performance,
you can say:

Rank = kflops

Preference for a particular list of machines can also be
specified:

Rank = ((machine ==

“node007.cluster.ornl.gov”) ||

(machine == “node008.cluster.ornl.gov”)

)

And preferences for these machines can be further speci-
fied using:

Rank = (((machine ==

“node007.cluster.ornl.gov”)*10) +

(machine == “node008.cluster.ornl.gov”)

so that node007 is preferred 10 times over node008, but
both are preferred over all others in the pool.

As you can see, Condor is an extremely powerful and flex-
ible system. It is particularly good for managing lots of serial
jobs, for harvesting cycles from disparate workstations, and
for scheduling distributed and parallel tasks in a Beowulf
cluster environment. It has capabilities and features not pre-
sented here, including the ability to define dependencies
among submitted jobs, and support for grid computing using
a mechanism called “flocking” or through the Globus toolk-
it. Even a graphical interface, called CondorView, is avail-
able for looking at machine and job statistics.

Even if Condor is not the best system for managing a wide
variety of parallel jobs using different versions of MPI on
your cluster, it’s worth watching. The developers are plan-
ning to add support for more recent MPICH releases, as well
as for LAM/MPI.

With features not available in many other batch systems,
Condor is a valuable asset for managing big computational
workloads in many computing environments.

Forrest Hoffman is a computer modeling and simulation research-
er at Oak Ridge National Laboratory. He can be reached at
forrest@climate.ornl.gov.

Extreme, from pg. 36

Condor is a valuable asset for
managing big computational workloads

EXTREME LINUX

www.linuxmagazine.com Linux Magazine Month 2003 59

1203 Extreme 10/22/03 2:12 AM Page 59

